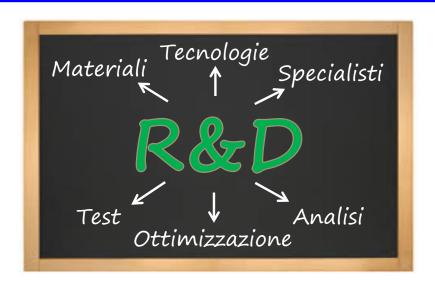


L'uso di geocompositi per il risanamento strutturale ecosostenibile di lunga durata delle pavimentazioni

PROF. ING. FRANCESCO CANESTRARI
UNIVERSITÀ POLITECNICA DELLE MARCHE – <u>f.canestrari@univpm.it</u>

PHD Ing. ARIANNA STIMILLI
UNIVERSITÀ POLITECNICA DELLE MARCHE — <u>a.stimilli@univpm.it</u>

Sommario Presentazione


- Parte 1: caratterizzazione meccanica avanzata
 - Attività sperimentali
 - Sintesi risultati e sviluppi recenti
- Parte 2: dimensionamento razionale di pavimentazioni rinforzate
 - Criteri di verifica
 - Parametri di calcolo
 - Soluzioni progettuali
 - Ecosostenibilità

Parte 1 Caratterizzazione meccanica avanzata

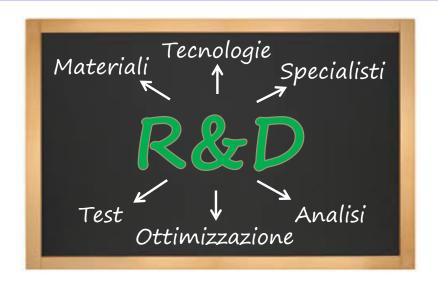
Attività sperimentali

Fase 1 Studio di laboratorio

Valutazione prestazionale e sviluppo di geomembrane bituminose rinforzate con fibra di vetro per applicazioni stradali

2011-2013

VARIABILI ANALIZZATE:


- trattamento superficiale e mescola per il compound;

- tipologia di rinforzo (materiali e apertura maglie);
- posizione del rinforzo;
- tipologia di conglomerato (modificato e non);
- condizioni all'interfaccia.

Attività sperimentali

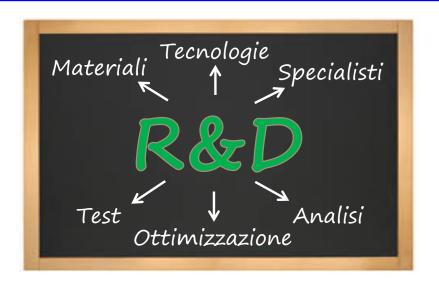
Fase 1 Studio di laboratorio

Valutazione prestazionale e sviluppo di geomembrane bituminose rinforzate con fibra di vetro per applicazioni stradali

2011-2013

Fase 2 Tronchi pilota

Installazioni aeroportuali e su strade urbane ed extra-urbane con elevati tenori di traffico (e.g. RA11, Verona, Falconara)


2013-2015

MONITORAGGIO DELLO STATO DI DEGRADO PROGRESSIVO SUBITO DALLA PAVIMENTAZIONE

Attività sperimentali: sviluppi recenti

Fase 1 Studio di laboratorio

Valutazione prestazionale e sviluppo di geomembrane bituminose rinforzate con fibra di vetro per applicazioni stradali

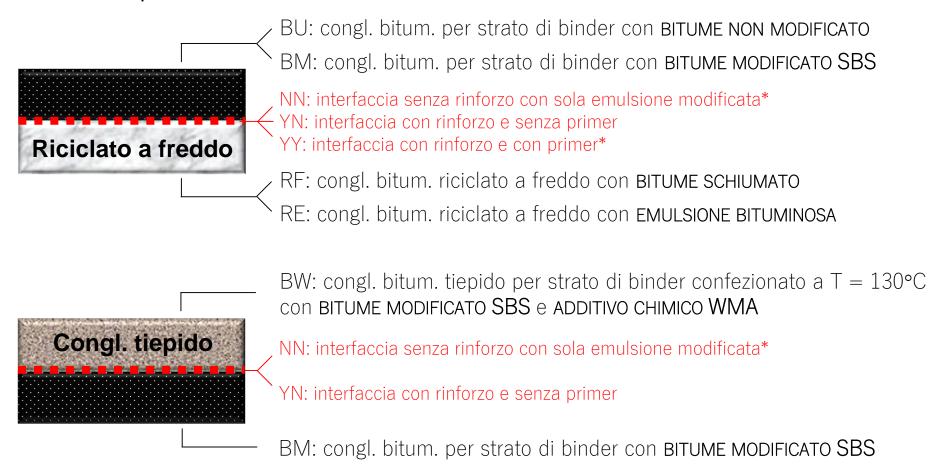
2011-2013

Fase 2 Tronchi pilota

Installazioni aeroportuali e su strade urbane ed extra-urbane con elevati tenori di traffico (e.g. RA11, Verona, Falconara)

2013-2015

Fase 3 Materiali innovativi


Studio delle prestazioni del geocomposito in presenza di materiali bituminosi innovativi (i.e. riciclati a freddo; WMA)

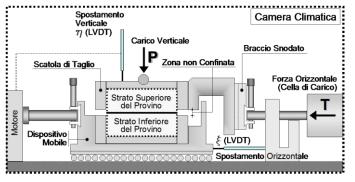
2016 - work in progress

Materiali - Fase 3

I materiali impiegati sono conformi alle miscele bituminose tipicamente previste nelle Norme Tecniche di Capitolato.

^{*} Dosaggio emulsione modificata e primer: 0.15 kg/m² bitume residuo

asphaltica


Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Caratterizzazione meccanica avanzata

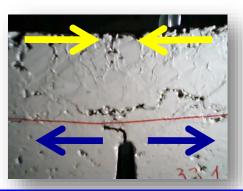
Taglio Interfaccia (UNI/TS 11214)

T = 20 °C; v = 2.5 mm/min; σ = 0.2 MPa

Carichi ciclici flessionali (4PB)

 $T = 20 \, ^{\circ}C; f = 1 \, Hz$

Roller Compactor (UNI EN 12697-33)


Flessione a rottura (3PB)

 $T = 20 \, ^{\circ}C; v = 50.8 \, mm/min$

Fessurazione di Riflessione

T = 30 °C; P = 660 N; 21 cicli/min

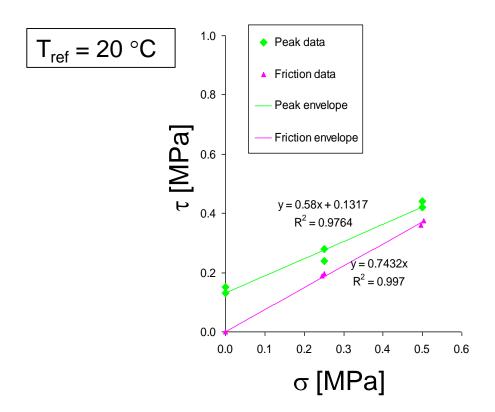
Obiettivo

Caratterizzazione prestazionale di laboratorio

a taglio, flessione e fessurazione di sistemi bistrato rinforzati

+

Monitoraggio di tronchi sperimentali in esercizio


parametri significativi ai fini del dimensionamento delle pavimentazioni rinforzate

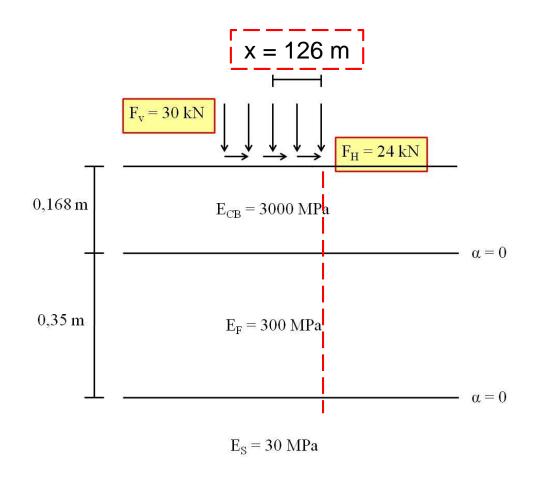
con geocompositi INDEX

Prestazioni a Taglio di Interfacce Rinforzate

Inviluppo di picco e di attrito

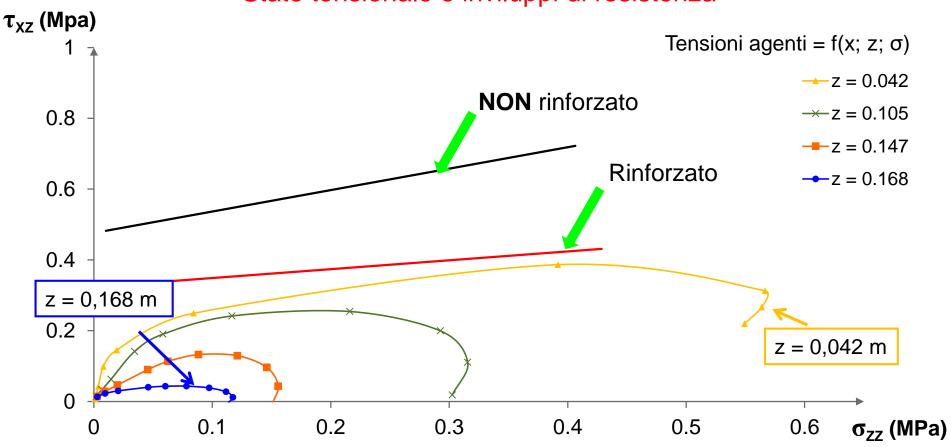
Parametri di resistenza

- ✓ Taglio puro \rightarrow c₀
- ✓ Angolo di attrito di picco Φ_D
- ✓ Angolo di attrito residuo Φ_{res}

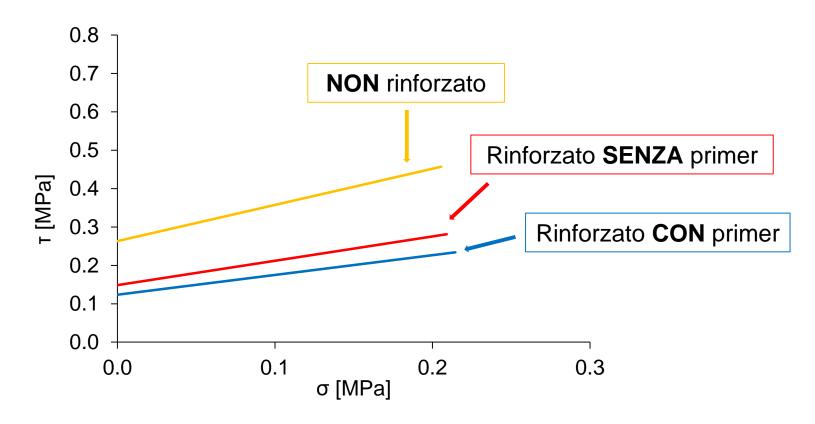

Leggi di resistenza

$$\tau_{p} = c_{0} + \sigma \tan \phi_{p}$$

$$\tau_{res} = \sigma \tan \phi_{res}$$

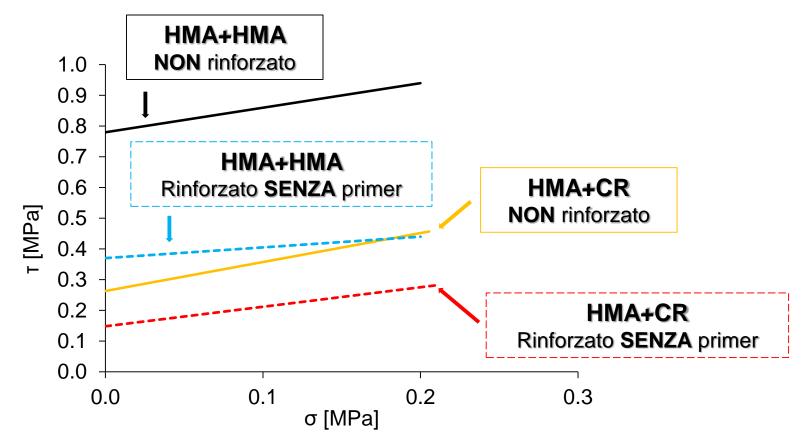


Stato tensionale e inviluppi di resistenza


Stato tensionale e inviluppi di resistenza

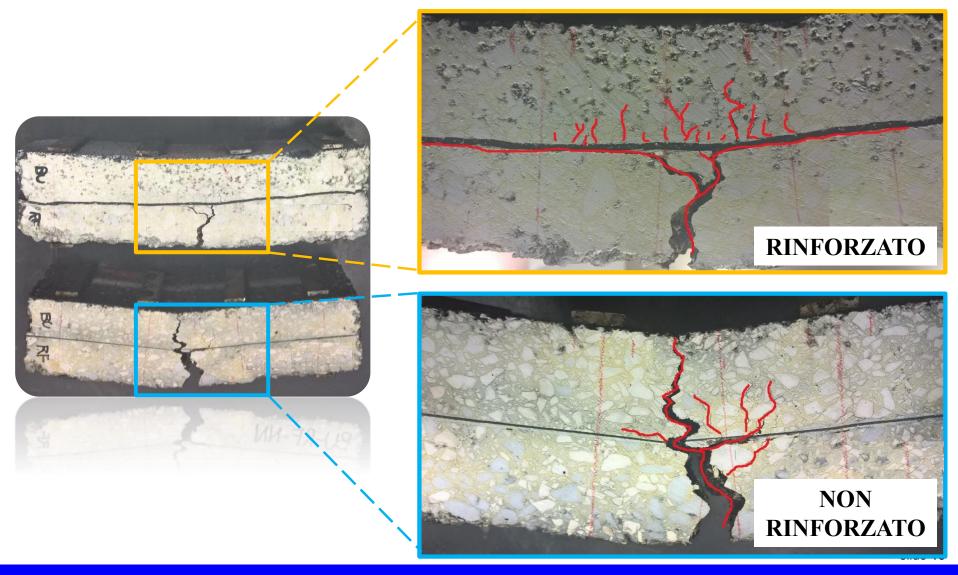
- 1. Discontinuità tra gli strati (resistenza a taglio funzione di T)
 - 2. Evitare installazioni superficiali del geocomposito
- 3. Valutare il comportamento a taglio in presenza di SFORZO NORMALE

Conglomerato a caldo modificato (HMA) + riciclato a freddo (CR)


N.B.: discontinuità tra gli strati

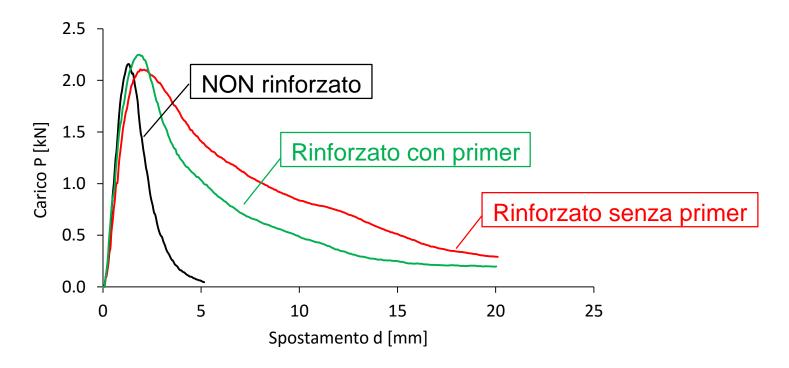
Congl. a caldo + Congl. a caldo

Vs


Congl. a caldo + ric. a freddo

N.B.: STRATI IN CR COLLOCATI A MAGGIORE PROFONDITÀ (< TENSIONI) Evitare installazioni superficiali specie in presenza di CR

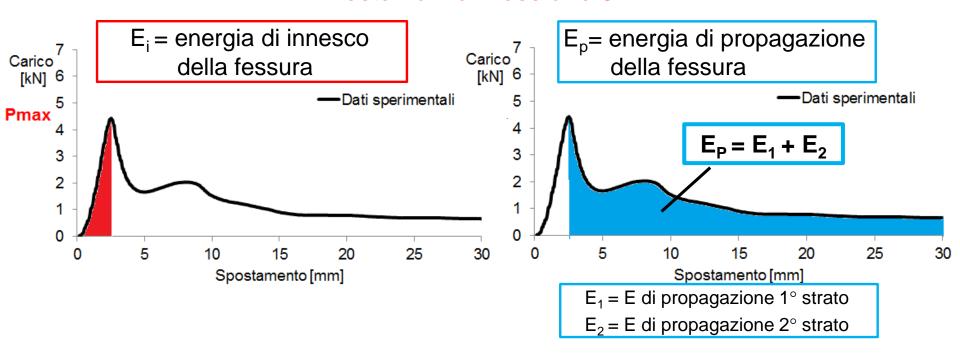
Caratterizzazione avanzata a flessione e ai carichi ciclici



Caratterizzazione avanzata a flessione

Prestazioni a Flessione 3PB

PROVA STATICA – PROVINI PRISMATICI: $30.5 \times 8.5 \times 8 \text{ cm}$ – T = 20 °C – V = 50.8 mm/min


CONGLOMERATO MODIFICATO + RICICLATO A FREDDO (schiumato)

Caratterizzazione avanzata a flessione

Prestazioni a Flessione 3PB

k = "coefficiente di prestazione" del rinforzo

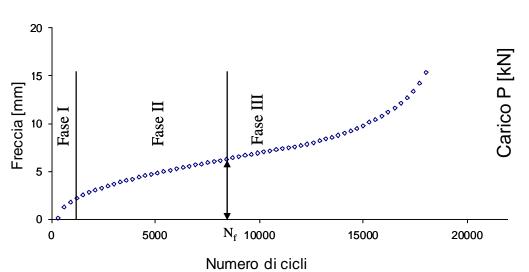
$$k_{\rm S} = \frac{(E_2)^{Rinforzato}}{(E_2)^{Non\ Rinforzato}}$$

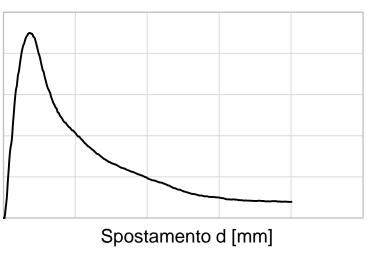
$$N_t = N_i + \mathbf{k_s} \cdot \Delta N_p$$

Caratterizzazione avanzata a flessione

Prestazioni a Flessione 3PB

RISULTATI ANALOGHI A
INTERPOSIZIONE IN CONGLOMERATO A CALDO
(sia tradizionale che modificato)


BENEFICI POTENZIALMENTE MAGGIORI PER FRAGILITÀ INTRINSECA RICICLATO A FREDDO


Caratterizzazione avanzata ai carichi ciclici

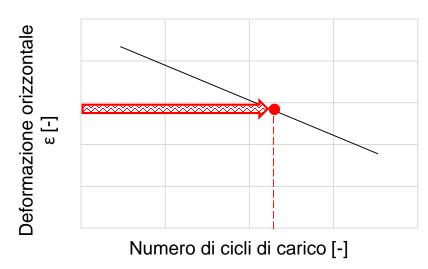
Prestazioni a flessione 3PB Vs carichi ciclici 4PB

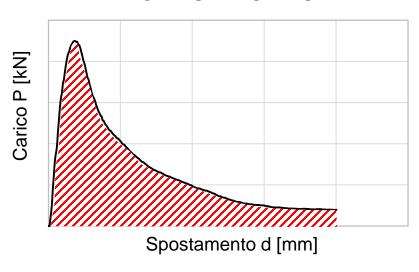
PROVE DINAMICHE **4PB**

PROVE STATICHE **3PB**

applicazione ciclica di σ < resistenza max

carico impulsivo a rottura


Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli


Caratterizzazione avanzata ai carichi ciclici

Prestazioni a flessione 3PB Vs carichi ciclici 4PB

PROVE DINAMICHE **4PB**

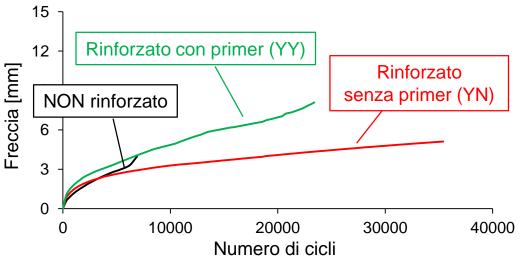
PROVE STATICHE **3PB**

applicazione ciclica di σ < resistenza max

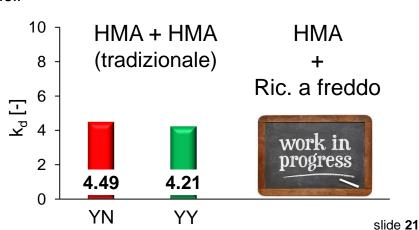
Σ energia accumulata ad ogni ciclo

carico impulsivo a rottura

energia specifica di rottura


Capacità resistente del sistema nei confronti della fessurazione

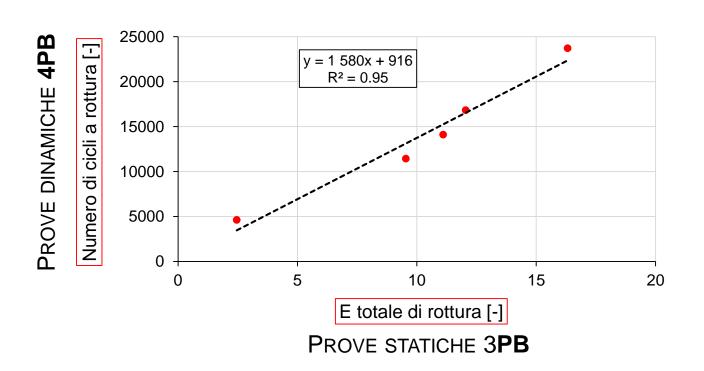
Caratterizzazione avanzata ai carichi ciclici


Prestazioni ai carichi ciclici 4PB

PROVA DINAMICA – PROVINI PRISMATICI: $30.5 \times 8.5 \times 8$ cm – T = 20 °C – f = 1 Hz

k = "<u>coefficiente di prestazione</u>" del rinforzo

$$k_d = \frac{N_f^{Rinforzato}}{N_f^{Non\,rinforzato}}$$



Caratterizzazione avanzata ai carichi ciclici

Prestazioni a flessione 3PB Vs carichi ciclici 4PB

CONGLOMERATO + RICICLATO A FREDDO (SCHIUMATO)

Parte 2

Dimensionamento razionale di pavimentazioni rinforzate

asphaltica

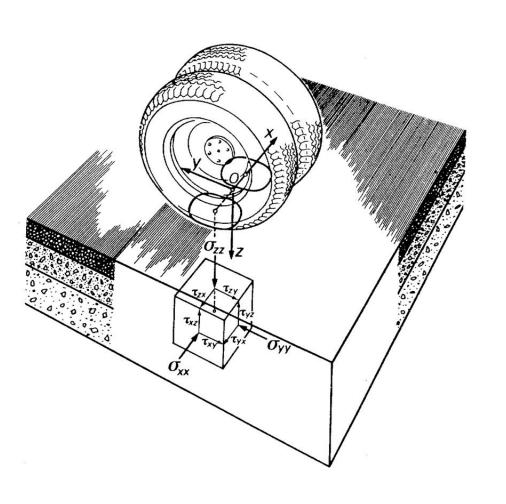
Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Manutenzione in campo stradale

asphaltica

Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Manutenzione in campo stradale



Soluzioni?? -> FATTIBILITÀ TECNICA + SOSTENIBILITÀ ECONOMICA

Metodo del multistrato elastico


```
□ Definizione dei carichi:
numero;
entità;
```

. . . .

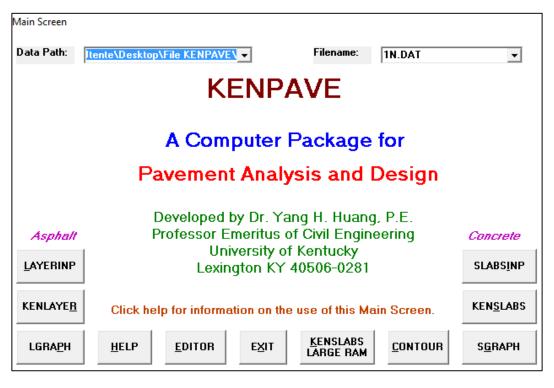
Definizione della struttura:

```
materiali;
```

spessori;

proprietà elastiche (E, v);

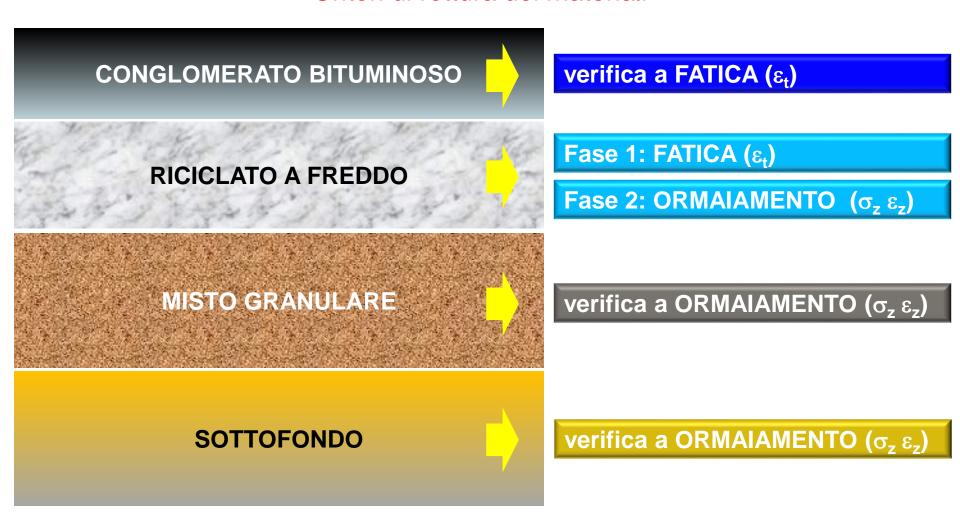
. . .


asphaltica

Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Dimensionamento Razionale di Pavimentazioni Rinforzate

Metodo del multistrato elastico



Calcolo dello stato tenso-deformativo in specifiche posizioni

Criteri di rottura dei materiali

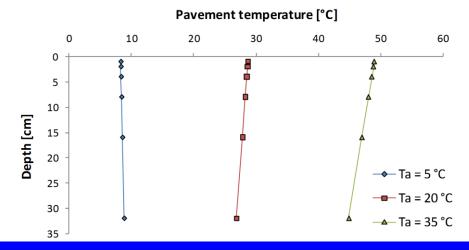
asphaltica

Verona, 24 febbraio 2017 - Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Dimensionamento Razionale di Pavimentazioni Rinforzate

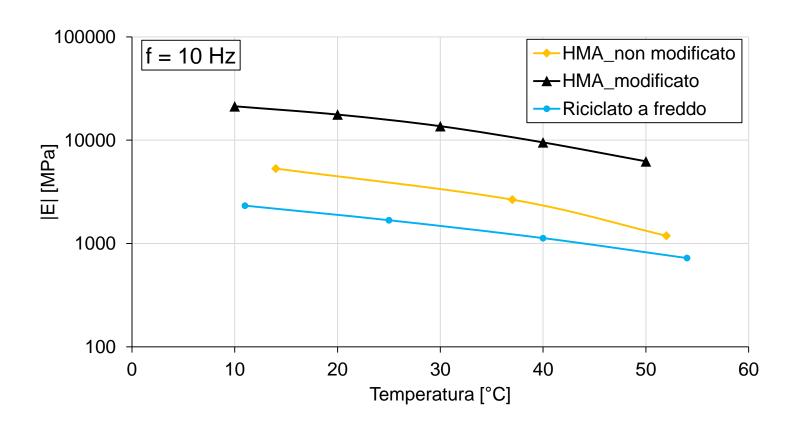
Parametri di calcolo: MATERIALI LEGATI

TERMO-DIPENDENZA



$$|E|(modulo\ elastico) = f(T)$$

Temperatura media stagionale dell'aria [°C]							
(dati ARPA – Veneto, Stazione San Pietro in Cariano – 2015)							
INVERNO	PRIMAVERA	ESTATE	AUTUNNO				
0.4	8.5	18.5	8.8				


T della pavimentazione calcolata a 1/3 dello spessore degli strati legati

Parametri di calcolo: MATERIALI LEGATI

Modulo di rigidezza: ISOCRONE a **f = 10 Hz** (dati di laboratorio)

Parametri di calcolo: MATERIALI NON LEGATI

Condizione media delle caratteristiche portanti

SOTTOFONDO

$$(E_d)_s = 10 \cdot CBR$$
 $(E_d)_s = 15 \cdot K$ $(E_d)_s = 0.2 \cdot M_d$

FONDAZIONE

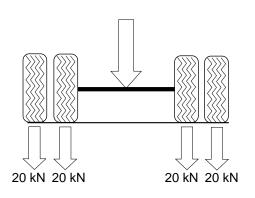
$$E_d = 10 \cdot CBR$$
 $E_d = 0.206h^{0.45}E_{ds}$ $E_d = k_1\theta^{k_2}$

E _d	modulo elastico dinamico (MPa)
CBR	indice CBR di progetto (addensamento e umidità effettive)
K	costante di reazione di Westergaard (kg/cm³)
M_d	modulo di deformazione (kg/cm²)
h	spessore dello strato (mm)
E_ds	modulo elastico del sottofondo (MPa)
k_1, k_2	costanti del materiale
θ	somma delle sollecitazioni principali (prova in cella triassiale)
	CBR K M _d h E _{ds} k ₁ , k ₂

Verona, 24 febbraio 2017 - Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Dimensionamento Razionale di Pavimentazioni Rinforzate

Parametri di calcolo


Materiali

	E [MPa]				
STRATO	INVERNO	PRIMAVERA	ESTATE	AUTUNNO	v [-]
	T = 0.4°C	T = 8.5°C	$T = 18.5^{\circ}C$	$T = 8.8^{\circ}C$	
CONGLOMERATO DRENANTE MODIFICATO	6405	5358	3755	5307	0.35
CONGLOMERATO BITUMINOSO MODIFICATO	12806	10531	6678	10415	0.35
CONGLOMERATO BITUMINOSO TRADIZIONALE	11552	6941	2966	6779	0.35
RICICLATO A FREDDO (FASE 1)	2678	2226	1710	2208	0.30
RICICLATO A FREDDO (FASE 2)	500				0.30
FONDAZIONE IN MISTOGRANULARE	300				0.35
Sottofondo		150			0.40

^{*}T = media stagionale dell'aria (dati ARPA – Veneto, Stazione San Pietro in Cariano – 2015)

Carichi

- asse singolo da 80 kN a ruote gemellate
- p_{gonfiaggio} = 700 kPa

Verifica dei materiali bituminosi

$$N_t = N_i + \Delta N_p$$

- N_t numero di cicli riferito all'asse standard che causa la fessurazione a fatica
- N_i numero di cicli riferito all'asse standard che causa l'innesco della fessurazione
- ΔN_p numero di cicli riferito all'asse standard che determina la risalita in superficie delle fessure innescatesi, interessando il 10 % della pavimentazione

Verifica dei materiali bituminosi

Legge di fatica di Verstraeten (innesco della fessurazione):

$$\log_{10} N_i = 6 + 4.7619 \cdot \left[\log_{10} \left(\lambda \cdot \frac{V_b}{V_b + V_v} \right) - \log_{10} \varepsilon_t \right]$$

Legge di **propagazione delle fessure**:

$$\Delta N_p = \left(E^{\alpha'} \cdot \sigma^{\beta'} \cdot 10^{\gamma'} \right) \cdot \left(1.373 \cdot e^{-1.089 \cdot n} \cdot h^{(-0.152 + 0.476 \cdot n)} \right)$$

spessore dello strato

f = (tipo di legante)

Verifica dei materiali bituminosi

Ref.: J. Jacobs (1995), «Crack growth in asphaltic mixes», PhD dissertation (Advisor: A.A.A. Molenaar), TU Delft (The Netherlands)

$$n = \frac{2}{(a_4 + 2 \cdot a_5 \cdot \log(t)) \cdot CF}$$

$$\ln(CF) = b_0 + b_1 \cdot S_{max} + b_2 \cdot S_{bit} + b_3 \cdot S_{mas} \cdot \ln S_{bit}$$

 $a_{i,} b_{i} = t$ coefficienti di regressione (funzione del tipo di bitume)

tempo di carico = 0.1/frequenza

 $S_{mas} =$ modulo di rigidezza del **conglomerato** (a una determinata T e frequenza di carico)

 S_{bit} modulo di rigidezza del **bitume**; $f = (T, t, T_{R&B}, PI)$ - van der Poel, 1954

n=5conglomerati NON modificati

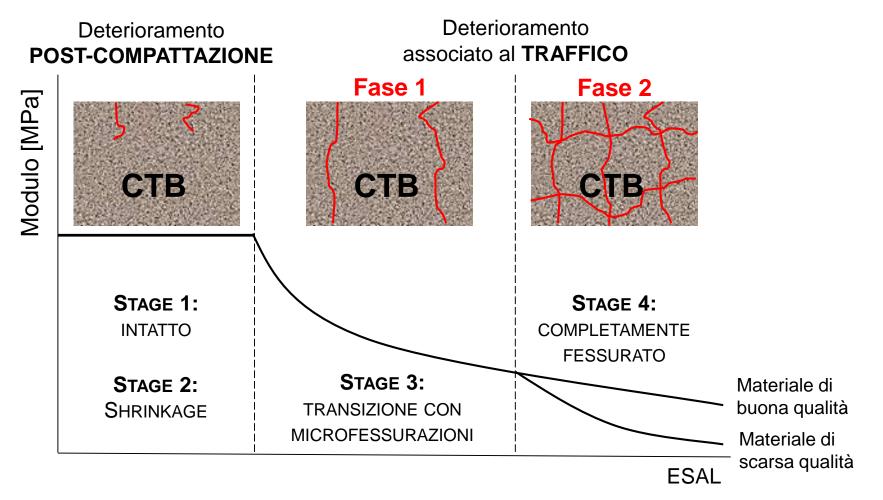
n = 4.5conglomerati modificati

Verifica dei materiali bituminosi rinforzati

$$N_t = N_i + k \cdot \Delta N_p$$

k = "coefficiente di prestazione" del rinforzo (determinabile sperimentalmente in laboratorio)

k = 3.5
conglomerati NON modificati



k = 5.5 conglomerati modificati

Criterio di rottura materiali riciclati a freddo

Criterio di rottura materiali riciclati a freddo

Fatica - Fase 1

$$N_z = 10^{7.92 - 1.28 \left(\frac{\varepsilon_t}{\varepsilon_b}\right)}$$

N₂ cicli di carico a rottura

 ε_{t} deformazione orizzontale alla base dello strato riciclato a freddo

 ε_h deformazione a rottura (f = tipologia di materiale)

Criterio di rottura materiali riciclati a freddo

Ormaiamento – Fase 2

$$Log_{10}N_z = \left(\frac{54.005}{t} + 4.5\right) \cdot (SR + 0.0664)^{-0.2313}$$

N₂ cicli di carico a rottura (eccessiva deformazione plastica)

t spessore dello strato riciclato a freddo (mm)

SR critical stress ratio (f = angolo di attrito ϕ e delle tensioni min e max in sommità dello strato riciclato a freddo)

$$SR = \frac{\sigma_1^a - \sigma_3}{\sigma_3 \left[\tan^2 \left(45^\circ + \frac{\phi}{2} \right) - 1 \right] + 2.c. \tan \left[45^\circ + \frac{\phi}{2} \right]}$$

slide 39

Criterio di rottura materiali non legati FONDAZIONE

$$\log_{10} N_z = 2.61 \cdot F + 3.71$$

N_z cicli di carico a rottura (eccessiva deformazione plastica)

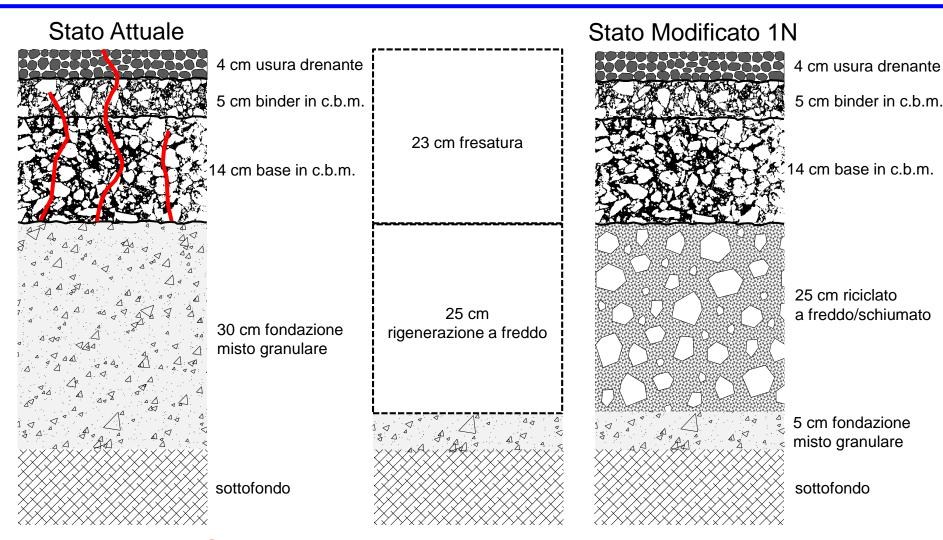
F coefficiente di sicurezza ($f = valori di \sigma nelle tre direzioni determinati alla profondità intermedia dello strato di fondazione; <math>c_{term}$, tabulato in funzione del tipo di materiale granulare).

$$F = \min \left[\left(\frac{c_{term}}{1000 \cdot \left(|\sigma_{ZZ}| + \sigma_{XX,YY\; max} \right)} \right)_{y=0}, \left(\frac{c_{term}}{1000 \cdot \left(|\sigma_{ZZ}| + \sigma_{XX,YY\; max} \right)} \right)_{y=-0,1575} \right]$$

Criterio di rottura materiali non legati SOTTOFONDO

$$N_z = 1.0498 \cdot 10^{-7} \cdot \varepsilon_t^{-4}$$

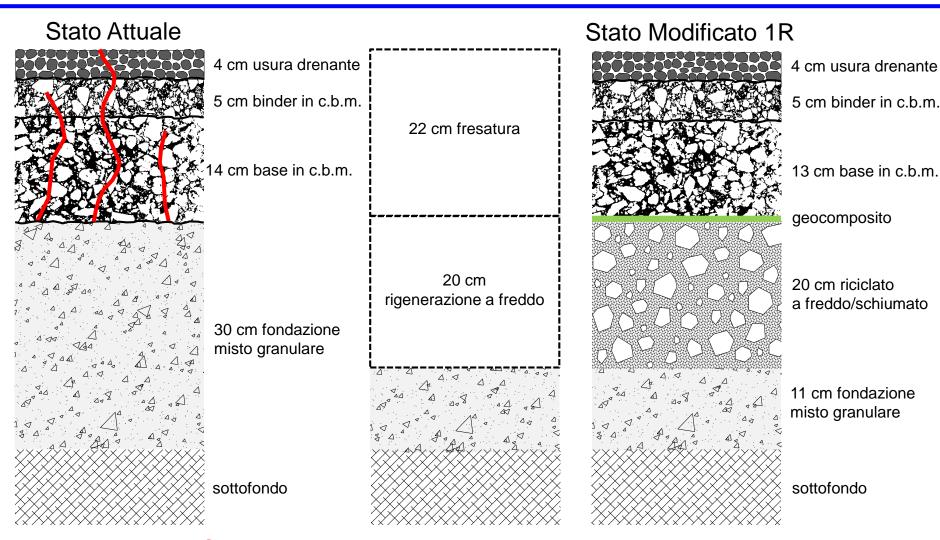
N_z cicli di carico a rottura (eccessiva deformazione plastica)


ε, deformazione verticale in sommità dello strato di sottofondo

asphaltica

Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Soluzione 1 - Risanamento profondo ANAS: tipologia RP-A1


Durata Soluzione 1N = **120 milioni** di assi standard da 8,2 t

asphaltica

Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Soluzione 1 - Risanamento profondo ANAS: alternativa alla tipologia RP-A1

Durata Soluzione 1R = **160 milioni** di assi standard da 8,2 t

Confronto Soluzioni 1N-1R

Riepilogo

1R → 160 milioni ESAL da 8,2 t = 30 milioni ESAL da 12 t

6 cm in meno di fresatura
1 cm in meno (su 23) di conglomerato bituminoso modificato
5 cm in meno (su 25) di riciclato a freddo schiumato

Incremento del 33% della Vita Utile

+ beneficio derivante dall'effetto impermeabilizzante antipumping + benefici ambientali

asphaltica

Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Soluzione 2 – Tipologia "Serenissima" A31 diramazione da A4

Stato Attuale Stato Modificato 2N 4 cm usura drenante 4 cm usura drenante 6 cm binder in c.b.m. 6 cm binder in c.b.m. 20 cm fresatura 10 cm base in c.b.m. 10 cm base in c.b.m. 25 cm fondazione 25 cm fondazione misto granulare misto granulare sottofondo sottofondo

Durata Soluzione 2N = 11 milioni di assi standard da 8,2 t

asphaltica

Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Soluzione 2 – Alternativa alla Tipologia "Serenissima" A31 diramazione da A4

Stato Attuale Stato Modificato 2R 4 cm usura drenante 4 cm usura drenante 6 cm binder in c.b.m. 14 cm fresatura 10 cm binder in c.b.m. geocomposito 10 cm base in c.b.m. 6 cm base in c.b.m. 25 cm fondazione misto granulare 25 cm fondazione misto granulare sottofondo sottofondo

Durata Soluzione 2R = 12 milioni di assi standard da 8,2 t

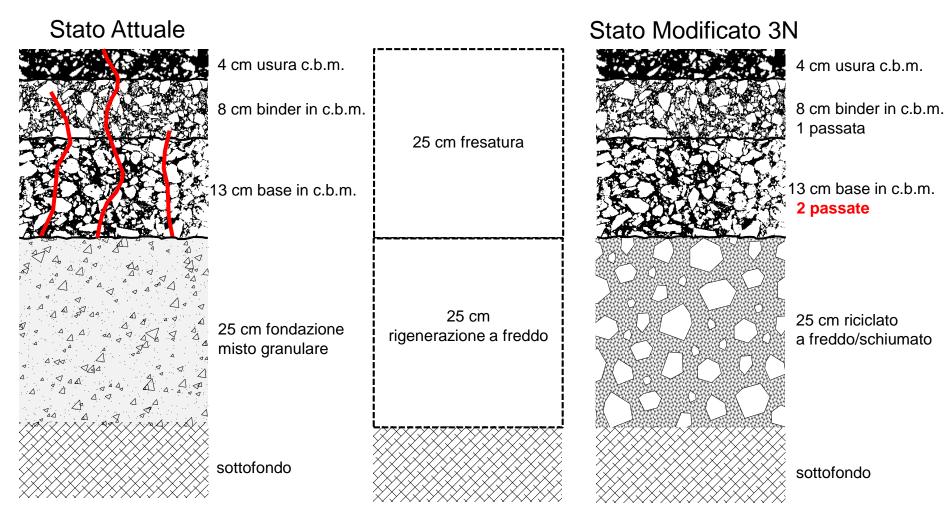
Confronto Soluzioni 2N-2R

Riepilogo

2R → 12 milioni ESAL da 8,2 t = 2,3 milioni ESAL da 12 t

6 cm in meno (su 20) di fresatura e conglomerato bituminoso modificato

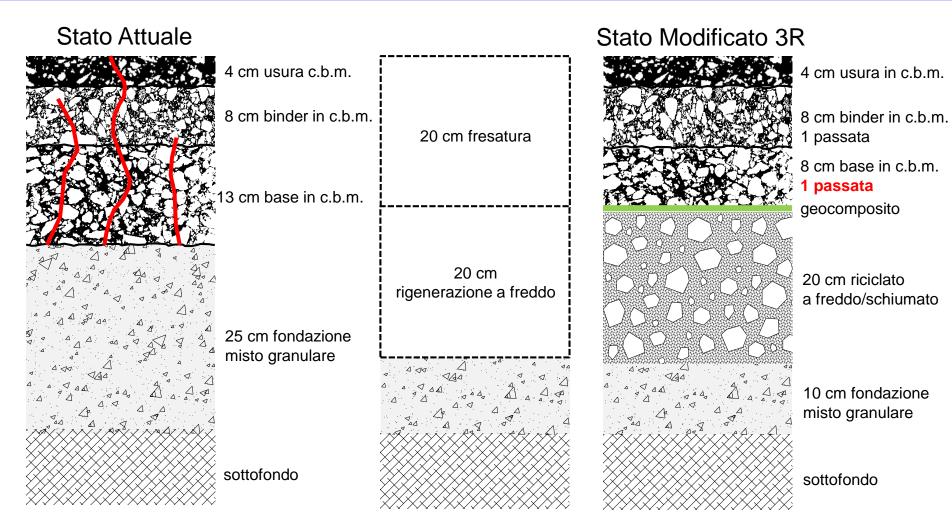
Incremento del 9% della Vita Utile


+ beneficio derivante dall'effetto impermeabilizzante antipumping + benefici ambientali

asphaltica

Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Soluzione 3 – **Tipologia "Transpolesana (SS 434)"**


Durata Soluzione 3N = 140 milioni di assi standard da 8,2 t

asphaltica

Verona, 24 febbraio 2017 – Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Soluzione 3 – **Alternativa alla Tipologia "Transpolesana (SS 434)**"

Durata Soluzione 3R = **140 milioni** di assi standard da 8,2 t

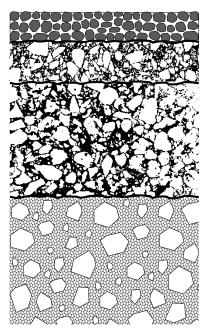
Confronto Soluzioni 3N-3R

Riepilogo

3R → 140 milioni ESAL da 8,2 t = 27 milioni ESAL da 12 t

5 cm in meno (su 25) di fresatura e conglomerato bituminoso modificato 5 cm in meno (su 25) di riciclato a freddo schiumato Maggior rapidità di intervento (ridotto n. di passate per compattare)

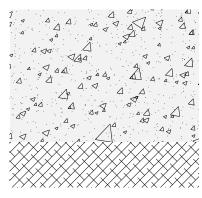
A parità di Vita Utile


+ beneficio derivante dall'effetto impermeabilizzante antipumping + benefici ambientali

slide 50

Soluzione 4 – Tipologia ANAS Pavimentazione Grande Traffico NC-1

Stato Modificato 4N

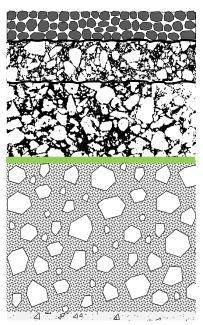

- 4 cm usura drenante
- 5 cm binder in c.b.m.
- 1 passata

15 cm base in c.b.m.

2 passate

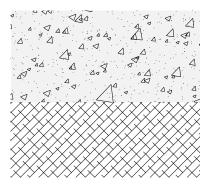
20 cm riciclato a freddo/schiumato

Durata Soluzione 4N = **130 milioni** di assi standard da 8,2 t


20 cm fondazione misto granulare

sottofondo

Soluzione 4 – Alternativa Tipologia ANAS Pavimentazione Grande Traffico NC-1


Stato Modificato 4R

- 4 cm usura drenante
- 5 cm binder in c.b.m.
- 1 passata
- 10 cm base in c.b.m.
- 1 passata

20 cm riciclato a freddo/schiumato

Durata Soluzione 4R = **130 milioni** di assi standard da 8,2 t

20 cm fondazione misto granulare

sottofondo

Confronto Soluzioni 4N-4R

Riepilogo

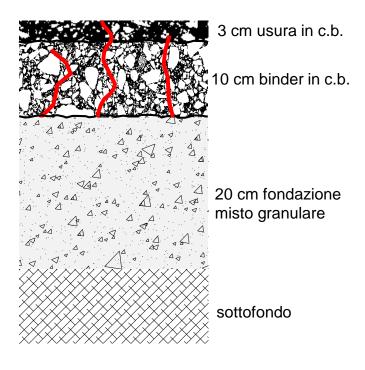
4R → 130 milioni ESAL da 8,2 t = 24.5 milioni ESAL da 12 t

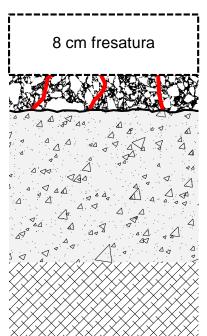
5 cm in meno (su 24) di fresatura e conglomerato bituminoso modificato
Maggior rapidità di intervento (ridotto n. di passate per compattare)

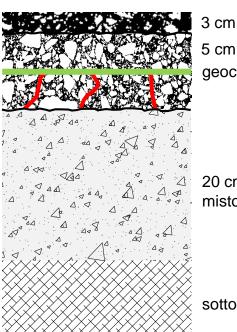
A parità di Vita Utile

+ beneficio derivante dall'effetto impermeabilizzante antipumping + benefici ambientali

Soluzione 5 - Risanamento superficiale ANAS: tipologia RS1-A


Stato Attuale Stato Modificato 5N 3 cm usura in c.b. 3 cm usura in c.b. 13 cm fresatura 10 cm binder in c.b. 10 cm binder in c.b. 20 cm fondazione 20 cm fondazione misto granulare misto granulare sottofondo sottofondo


Durata Soluzione 5N = 3,3 milioni di assi standard da 8,2 t


Soluzione 5 - Risanamento superficiale ANAS: alternativa alla tipologia RS1-A

Stato Attuale

Stato Modificato 5R

3 cm usura in c.b.5 cm binder in c.b.geocomposito

20 cm fondazione misto granulare

sottofondo

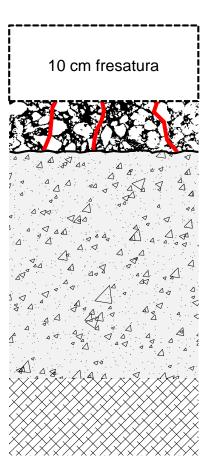
Durata Soluzione 5R = **5,3 milioni** di assi standard da 8,2 t

Confronto Soluzioni 5N-5R

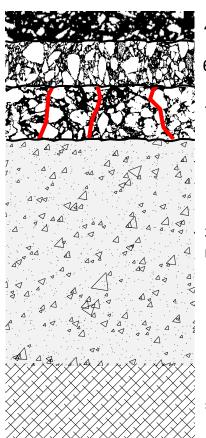
Riepilogo

5R → 5,3 milioni ESAL da 8,2 t = 1,0 milioni ESAL da 12 t

5 cm in meno (su 13) di fresatura e conglomerato bituminoso tradizionale


Incremento del 60% della Vita Utile

+ beneficio derivante dall'effetto impermeabilizzante antipumping + benefici ambientali



Soluzione 6 – **Tipologia di progetto ANAS tipo RA 11**

Stato Attuale 3 cm usura in c.b. 4 cm binder in c.b. 10 cm base in c.b. 30 cm fondazione misto granulare sottofondo

Stato Modificato 6N

4 cm usura in c.b.m.

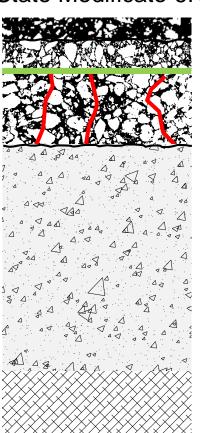
6 cm binder c.b.m.

7 cm base in c.b.

30 cm fondazione misto granulare


sottofondo

Durata Soluzione 6N = **1,4 milioni** di assi standard da 8,2 t



Soluzione 6 – Alternativa alla Tipologia di progetto ANAS tipo RA 11

Stato Attuale 3 cm usura in c.b. 4 cm binder in c.b. 10 cm base in c.b. 30 cm fondazione misto granulare sottofondo

Stato Modificato 6R

3 cm usura in c.b.m.4 cm binder c.b.m.geocomposito

10 cm base in c.b.

30 cm fondazione misto granulare

sottofondo

Durata Soluzione 6R = **3,3 milioni** di assi standard da 8,2 t

Confronto Soluzioni 6N-6R

Riepilogo

6R → 3,3 milioni ESAL da 8,2 t = 0,6 milioni ESAL da 12 t

3 cm in meno (su 10) di fresatura e conglomerato bituminoso modificato

Incremento del 130% della Vita Utile

+ beneficio derivante dall'effetto impermeabilizzante antipumping
 + benefici ambientali

Soluzione 7 - Risanamento superficiale ANAS: tipologia RS1-C

Stato Attuale Stato Modificato 7N 3 cm usura c.b. 3 cm usura c.b. 9 cm fresatura 6 cm binder in c.b. 6 cm binder in c.b. 25 cm fondazione 25 cm fondazione misto granulare misto granulare NB: E_{fondazione} = 300 MPa sottofondo sottofondo

Durata Soluzione 7N = **0,9 milioni** di assi standard da 8,2 t

Soluzione 7 - Risanamento superficiale ANAS: alternativa alla tipologia RS1-C

Stato Attuale Stato Modificato 7R 3 cm usura c.b. 3 cm usura c.b. 7 cm fresatura 4 cm binder in c.b. 6 cm binder in c.b. geocomposito 25 cm fondazione 25 cm fondazione misto granulare misto granulare NB: E_{fondazione} = 300 MPasottofondo sottofondo

Durata Soluzione 7R = **2,4 milioni** di assi standard da 8,2 t

Confronto Soluzioni 7N-7R

Riepilogo

7R \rightarrow 2,4 milioni ESAL da 8,2 t = 0,5 milioni ESAL da 12 t

2 cm in meno (su 9) di fresatura e conglomerato bituminoso tradizionale

Incremento del 190% della Vita Utile

+ beneficio derivante dall'effetto impermeabilizzante antipumping + benefici ambientali

asphaltica

Verona, 24 febbraio 2017 - Prof. Ing Francesco Canestrari & PhD Ing. Arianna Stimilli

Soluzione 7/8 – Interporto di Verona (tratto via Sommacampagna)

Validazione dimensionamento e parametri di calcolo

Dati di traffico (gennaio 2017)

- TGM = $7020 \text{ (ESAL}_{8,2} \text{ t)/gg}$
- TAM ≈ 1.75 milioni (ESAL_{8.2 t})/anno

TRAFFICO PESANTE

sovracompattazione degli strati non legati

TRATTO D'INTERVENTO

Soluzione 7/8 – Interporto di Verona (tratto via Sommacampagna)

Validazione dimensionamento e parametri di calcolo

Dati di traffico (gennaio 2017)

- $TGM = 7020 (ESAL_{8,2} t)/gg$
- TAM ≈ 1.75 milioni (ESAL_{8.2 t})/anno

Durata abituale tratto via Sommacampagna < 2 anni

Durata soluzione 7N
$$E_{fond} = 300 \text{ MPa}$$

Durata soluzione 7N
$$\rightarrow$$
 da calcolo $\rightarrow \frac{0.9}{1.75} \approx 0.5$ anni

Soluzione 8 - Risanamento superficiale ANAS: tipologia RS1-C

Stato Attuale Stato Modificato 8N 3 cm usura c.b. 3 cm usura c.b. 9 cm fresatura 6 cm binder in c.b. 6 cm binder in c.b. 25 cm fondazione 25 cm fondazione misto granulare misto granulare NB: E_{fondazione} = 500 MPa sottofondo sottofondo

Durata Soluzione 8N = **2,9 milioni** di assi standard da 8,2 t

Soluzione 8 - Risanamento superficiale ANAS: alternativa alla tipologia RS1-C

Durata Soluzione 8R = **8,5 milioni** di assi standard da 8,2 t

Confronto Soluzioni 8N-8R

Riepilogo

8R \rightarrow 8,5 milioni ESAL da 8,2 t = 1,5 milioni ESAL da 12 t

2 cm in meno (su 9) di fresatura e conglomerato bituminoso tradizionale

Incremento del 190% della Vita Utile

+ beneficio derivante dall'effetto impermeabilizzante antipumping + benefici ambientali

Soluzione 7/8 – Interporto di Verona (tratto via Sommacampagna)

Validazione dimensionamento e parametri di calcolo

Dati di traffico (gennaio 2017)

- TGM = $7020 \text{ (ESAL}_{8,2} \text{ t)/gg}$ TAM $\approx 1.75 \text{ milioni (ESAL}_{8,2 \text{ t}})/\text{anno}$

Durata abituale tratto via Sommacampagna < 2 anni

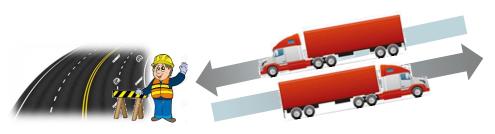
Durata soluzione 8N $E_{fond} = 500 MPa$

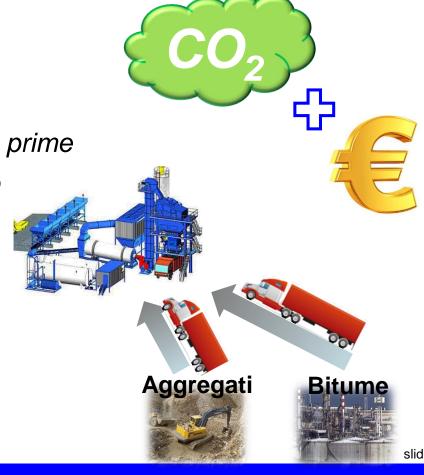
$$\rightarrow$$
 da calcolo $\Rightarrow \frac{2.9}{1.75} \approx 1.7 \text{ anni}$

Durata soluzione 8R $E_{fond} = 500 MPa$

$$\rightarrow$$
 da calcolo $\rightarrow \frac{8.5}{1.75} \approx 5$ anni

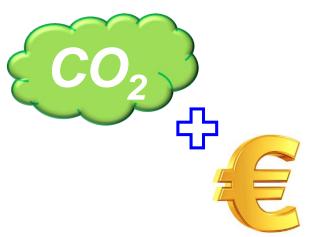
- Soluzione di calcolo lievemente conservativa
- Bontà dei parametri assunti (i.e. E_{fond})


Ecosostenibilità di pavimentazioni rinforzate


"L'uso di geocompositi per il risanamento strutturale <u>ecosostenibile</u> di lunga durata delle pavimentazioni "

Voci di risparmio:

- *↓ fresatura*
- *↓ conglomerato prodotto*
- *↓* estrazione e lavorazione materie prime
- *↓ trasporto materie prime e fresato*
- ↓ danni alla viabilità secondaria


Ecosostenibilità di pavimentazioni rinforzate

"L'uso di geocompositi per il risanamento strutturale <u>ecosostenibile</u> di lunga durata delle pavimentazioni "

Voci di risparmio:

- *↓ fresatura*
- ↓ conglomerato prodotto
- ↓ estrazione e lavorazione materie prime
- *↓ trasporto materie prime e fresato*
- ↓ danni alla viabilità secondaria
- ↓ energia per stesa e compattazione
- ↓ interventi di manutenzione nel tempo
- etc ...

Ecosostenibilità di pavimentazioni rinforzate

Impatto ambientale: variabili in gioco

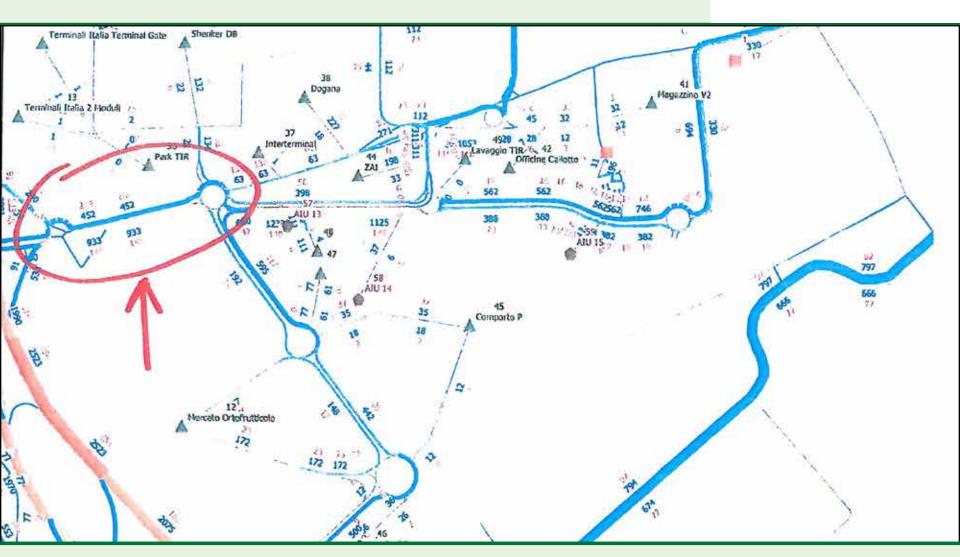
- RIDUZIONE DEGLI SPESSORI DI CONGLOMERATO DEGLI STRATI SOVRASTANTI IL RINFORZO
 - → riduzione dei VOLUMI DI CONGLOMERATO prodotti

- riduzione dei mezzi per il trasporto verso l'impianto
- riduzione dei MEZZI DI TRASPORTO DA E VERSO IL CANTIERE
 - riduzione del <u>DISTURBO e DANNO alla viabilità secondaria</u>

- riduzione dell'energia per il funzionamento dell'impianto
- riduzione dell'energia per la posa in opera e la compattazione

- RIDUZIONE DEGLI SPESSORI DI FRESATURA

- riduzione delle AREE DI SMALTIMENTO
- riduzione dei MEZZI DI TRASPORTO DA E VERSO IL CANTIERE
 - o riduzione del DISTURBO e DANNO alla viabilità secondaria slide 71



Grazie per l'attenzione

Febbraio 2017 Via Sommacampagna - Interporto di Verona

Per metà soluzione "INDEX"

(Carreggiata di andata)

- Fresatura: 7 cm
- Autotene Asfaltico Antipumping
- Binder: 4 cm
- Strati di usura: 3 cm

Per metà soluzione "Canestrari": (Carreggiata di ritorno)

- Fresatura: 9 cm
- Risagomatura fine: 2 cm
- Autotene Asfaltico Antipumping
- Binder: 4 cm
- Strati di usura: 3 cm

Luglio 2013 Via Sommacampagna - Quadrante Europa - **Verona**

Sopralluogo gennaio 2018

Sopralluogo gennaio 2018

Sopralluogo gennaio 2018

